Thin Film Interference SPH4U

Consider a thin film like a soap bubble.

Some light will be ______ through the film and some light will be from the _____. Light will be reflected from the thin film These two reflections can . Recall that waves reflecting from a medium are _____. and from a _______ medium are ______. If the film's thickness *t* is than the , the _____ is minimal and the ______ at the first interface means that the reflections will interfere ______. If the thickness is _____, the path difference will be and the inverted and non-inverted reflections will interfere _____. If the thickness is , the path difference will be and the inverted and non-inverted reflections will interfere . Constructive interference will occur again when: Destructive interference will occur again when:

Example: What is the minimum thickness of a soap bubble (n = 1.33) in air that will produce reflected constructive interference when illuminated with red light of wavelength 640 nm?

If the film is	material		
(e.g., a coating on glass), there will be			
		-	-
	$_ \rightarrow \text{constructive}$	alass	air
	\rightarrow destructive	(n = 1.5)	(n = 1.0)
	\rightarrow constructive	coating $(n = 1.4)$	

Example: What minimum thickness of coating (n = 1.4) on glass (n = 1.5) would be required to minimally reflect light of wavelength 550 nm?

	on glasses are one application of thin films.	
Another is	, placed on machined metal to check if it is flat.	

Interference patterns indicate areas with air gaps in need of further machining.

Interference can also be seen in the transmitted light because of ______

within the film. Note that the interference pattern is opposite that produced by reflection.

