Hess's Law: The value of ΔH for any reaction that can be written in steps equals the sum of the values of ΔH for the individual steps.

Method 1: Additivity of Heats

1. Identify the target equation and balanced it (if not given).

2. Identify the individual step equations. These are provided or are found on a Table of Heats of Formation.

3. Reverse any step equations so that the position of reactants/products matches that of the target equation. If an equation is reversed, also reverse the sign of ΔH for the step equation.

4. Multiply the step equations by the appropriate coefficient to match those in the target equation. Also multiply the ΔH by the same coefficient.

5. Add up the modified step equations and their ΔH values. The sum of the modified individual step equation should be identical to the target equation.

Heats (Enthalpy Change) of Formation		
Image: Constraint of the second system Formula H2 (g) + ½ O2 (g) \rightarrow H2O (g) H2 (g) + ½ O2 (g) \rightarrow H2O (l) S (s) + ½ O2 (g) \rightarrow SO2 (g) S (s) + ½ O2 (g) \rightarrow SO3 (g) H2(g) + S(s) + 2O2(g) \rightarrow H2SO4 (l) ½ N2 (g) + ½ O2 (g) \rightarrow NO (g) ½ N2 (g) + ½ O2 (g) \rightarrow NO2 (g) ½ N2 (g) + ½ O2 (g) \rightarrow NO2 (g) ½ N2 (g) + ½ O2 (g) \rightarrow NO2 (g) ½ N2 (g) + ½ O2 (g) \rightarrow CO (g) C (s) + ½ O2 (g) \rightarrow CO (g) C (s) + ½ O2 (g) \rightarrow CO (g) C (s) + ½ O2 (g) \rightarrow CO2 (g) C (s) + ½ O2 (g) \rightarrow CO2 (g) C (s) + ½ O2 (g) \rightarrow CO2 (g) C (s) + 1/2 O2 (g) \rightarrow CO2 (g) C (s) + 2H2 (g) \rightarrow CO2 (g) C (s) + 2H2 (g) \rightarrow CO2 (g) C (s) + 3H2 (g) \rightarrow CO2 (g) C (s) + 3H2 (g) \rightarrow C2H6 (g) C (s) + 4H2 (g) + O2 (g) \rightarrow C3H7COOH (l) 2C (s) + 4H2 (g) + O2 (g) \rightarrow C3H7COOH (l) 2C (s) + 2H2 (g) + O2 (g) \rightarrow CH3COOH (l)	Name water vapour water sulfur dioxide sulfur trioxide sulfuric acid nitric oxide nitrogen dioxide ammonia carbon monoxide carbon dioxide methane ethane propane hydrogen iodide butyric acid	- 811.7 + 90.25 + 33.18 - 46.11 - 110.5 - 393.5 - 74.81 - 84.68 - 103.8

Method 1: Additivity of Heats (continued)

Example: Determine ΔH for the following reaction: methane (g) + oxygen (g) \longrightarrow carbon dioxide (g) + water (g)

Method 2: Summation of Heats

Identify the $\Delta H_{\text{formation}}$ for each product and reactant and solve using the equation:

$$\Delta H = \sum \left(n \Delta H_{form}(products) \right) - \sum \left(n \Delta H_{form}(reactants) \right)$$

Example: Determine ΔH for the following reaction: ammonia (g) + oxygen (g) \longrightarrow nitrogen dioxide (g) + water (g) NH₃ (g) + $\frac{7}{4}$ O₂ \longrightarrow NO₂ (g) + $\frac{3}{2}$ H₂O (g) SCH4U1

Hess's Law and Additivity of Heats

Complete these questions using the Additivity of Heats method. Refer to the Table of Heats of Formation for the individual step equations.

- 1. Calculate ΔH for each of the following:
 - a) $H_2O(I) \longrightarrow H_2O(g)$ b) $C_3H_7COOH(I) + 5O_2(g) \longrightarrow 4CO_2(g) + 4H_2O(I)$ c) $3 CH_3COOH(I) + \frac{11}{2}O_2(g) \longrightarrow 5CO_2(g) + CO(g) + 6H_2O(I)$
- a) Write a balanced equation for the combustion of propane gas (C₃H₈) to produce carbon dioxide and water vapour.
 b) Add equations and heats of formation to calculate the Δ*H* for the combustion of 1.00 mol of propane.
- Answers: 1 a) 44.0 kJ/mol b) -2195 kJ/mol c) -2333 kJ/mol 2 -2044 kJ

Do the following problems using the Summation of Heats method.

1. Predict the heat of reaction for:

 $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$

2. Given that ΔH_{form} for SiO₂ (s) is – 856.9 kJ/mol, what is the ΔH for:

 $SiO_2(s) + C(s) \longrightarrow CO_2(g) + Si(s)$

- 3. What is the heat of formation of H_2SO_4 (I) from H_2O (I) and SO_3 (g)?
- 4. Given: $\Delta H_{\text{form}} \text{ for } P_4O_{10} (s) = -3009.5 \text{ kJ/mol} \\ \Delta H_{\text{form}} \text{ for } H_3PO_4 (s) = -1266.5 \text{ kJ/mol}$

Calculate the heat of reaction for: $P_4O_{10}(s) + 6H_2O(l) \longrightarrow 4H_3PO_4(s)$

Answers: 1. - 802.3 kJ/mol 2. + 463.4 kJ/mol 3. - 130.2 kJ/mol 4. - 342 kJ/mol