\qquad

Proportionality Practice SPH4U

Matching

Match the relationships on the left to their descriptions on the right.
\qquad $a \propto b$
A. a is proportional to the square root of b
$a \propto 1 / b$
B. a is directly proportional to b
$\ldots a \propto 1 / b^{2}$
C. a is proportional to b squared
$=a \propto b^{2}$
D. a is inversely proportional to b
$a \propto \sqrt{b}$
E. a is proportional to the inverse square of b

Multiple Choice

1. Given $a=\frac{F_{n e t}}{m}$, which of the following is true?
A. $\quad a \propto m$
B. $a \propto 1 / m$
C. $a \propto 1 / m^{2}$
D. $a \propto \sqrt{m}$
2. Given $v_{a v}=\frac{\Delta d}{\Delta t}$, which of the following is true?
A. $v_{a v} \propto \Delta d$
B. $v_{a v} \propto 1 / \Delta d$
C. $v_{a v} \propto \sqrt{\Delta d}$
D. $v_{a v} \propto \Delta d^{2}$
3. Given $v=\lambda f$, which of the following is true?
A. $\lambda \propto f$
B. $\lambda \propto 1 / f$
C. $\lambda \propto \sqrt{f}$
D. $\lambda \propto f^{2}$
4. Given $F_{e}=k \frac{q_{1} q_{2}}{r^{2}}$, which of the following is true?
A. $F_{e} \propto r^{2}$
B. $F_{e} \propto 1 / r$
C. $F_{e} \propto 1 / r^{2}$
D. $F_{e}=1 / \sqrt{r}$
5. Given $W=\frac{1}{2} k x^{2}$, which of the following is true?
A. $x \propto W^{2}$
B. $x \propto \sqrt{W}$
C. $x \propto \frac{1}{W}$
D. $x \propto \frac{1}{W^{2}}$
6. Given $p=m v$, if velocity v is doubled, momentum p is multiplied by a factor of:
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4
7. Given $F_{c}=\frac{m v^{2}}{r}$, if radius r is doubled, force F_{c} is multiplied by a factor of:
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4
8. Given $E_{k}=\frac{1}{2} m v^{2}$, if speed v is doubled, kinetic energy E_{k} is multiplied by a factor of:
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4
9. Given $F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$, if distance r is doubled, is force F_{G} is multiplied by a factor of:
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4
10. Given $P=V I$, if voltage is doubled, power is multiplied by a factor of:
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4

Problem Solving

1. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Time is the independent variable.

Time (s)	1.0	2.0	3.0	4.0	5.0
Distance (m)	4.9	19.6	44.1	78.4	122.5

2. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Frequency is the independent variable.

Frequency (Hz)	185	$22 \underline{0}$	277	392	466
Wavelength (m)	1.86	1.57	1.24	0.88	0.74

3. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Length is the independent variable.

Length (m)	0.10	0.20	0.30	0.40	0.50
Period (s)	0.63	0.90	1.10	1.27	1.42

Answers: Matching: B, D, E, C, A Multiple Choice: 1. B; 2. A; 3. B; 4. C; 5. B
More Multiple Choice: 1. C; 2. B; 3. D; 4. A; 5. D
Question 5 is a trick question, as the current also depends on the voltage:

$$
I=\frac{V}{R} \quad \text { so } \quad P=V I=V\left(\frac{V}{R}\right)=\frac{V^{2}}{R}
$$

Problem Solving:

1. Distance \propto Time $^{2}, k=4.9 \mathrm{~m} / \mathrm{s}^{2}$

2. Wavelength $\propto \frac{1}{\text { Frequency }}, k=345 \mathrm{~m} / \mathrm{s}$

3. Period $\propto \sqrt{\text { Length }}, k=2.0 \frac{s}{\sqrt{m}}$

