Name:

Proportionality Practice SPH4U

Matching

Match the relationships on the left to their descriptions on the right.

 $a \propto b$	A. <i>a</i> is proportional to the square root of <i>b</i>
 $a \propto 1/b$	B. a is directly proportional to b
 $a \propto 1/b^2$	C. <i>a</i> is proportional to <i>b</i> squared
 $a \propto b^2$	D. a is inversely proportional to b
 $a \propto \sqrt{b}$	E. a is proportional to the inverse square of b

Multiple Choice

1. Given
$$a = \frac{F_{net}}{m}$$
, which of the following is true?
A. $a \propto m$ B. $a \propto 1/m$ C. $a \propto 1/m^2$ D. $a \propto \sqrt{m}$
2. Given $v_{av} = \frac{\Delta d}{\Delta t}$, which of the following is true?
A. $v_{av} \propto \Delta d$ B. $v_{av} \propto 1/\Delta d$ C. $v_{av} \propto \sqrt{\Delta d}$ D. $v_{av} \propto \Delta d^2$
3. Given $v = \lambda f$, which of the following is true?
A. $\lambda \propto f$ B. $\lambda \propto 1/f$ C. $\lambda \propto \sqrt{f}$ D. $\lambda \propto f^2$
4. Given $F_e = k \frac{q_1 q_2}{r^2}$, which of the following is true?
A. $F_e \propto r^2$ B. $F_e \propto 1/r$ C. $F_e \propto 1/r^2$ D. $F_e = 1/\sqrt{r}$
5. Given $W = \frac{1}{2}k x^2$, which of the following is true?
A. $x \propto W^2$ B. $x \propto \sqrt{W}$ C. $x \propto \frac{1}{W}$ D. $x \propto \frac{1}{W^2}$

More Multiple Choice

1.	Given $p = mv$, if v	p = mv, if velocity v is doubled, momentum p is multiplied by a factor of:				
	A. 1/4	B. 1/2	C. 2	D. 4		
2.	Given $F_c = \frac{mv^2}{r}$,	if radius r is doubled, t	Force F_c is multiplie	d by a factor of:		
	A. 1/4	B. 1/2	C. 2	D. 4		
3.	Given $E_k = \frac{1}{2}mv^2$, if speed v is doubled,	kinetic energy E_k is	s multiplied by a factor of:		
	A. 1/4	B. 1/2	C. 2	D. 4		
4.	Given $F_G = G \frac{m_1 m_2}{r^2}$	$\frac{2}{r}$, if distance <i>r</i> is dou	bled, is force F_G is related by F_G is related by F_G .	multiplied by a factor of:		
	A. 1/4	B. 1/2	C. 2	D. 4		
5.	Given $P = VI$, if v	oltage is doubled, pow	er is multiplied by a fa	actor of:		
	A. 1/4	B. 1/2	C. 2	D. 4		

Problem Solving

1. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Time is the independent variable.

Time (s)	1.0	2.0	3.0	4.0	5.0
Distance (m)	4.9	19.6	44.1	78.4	122.5

2. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Frequency is the independent variable.

Frequency (Hz)	185	22 <u>0</u>	277	392	466
Wavelength (m)	1.86	1.57	1.24	0.88	0.74

3. Graph the following data set on a separate sheet of graph paper. Determine the relationship between the variables and draw a second graph (if necessary) to illustrate this relationship and determine the proportionality constant k. Length is the independent variable.

Length (m)	0.10	0.20	0.30	0.40	0.50
Period (s)	0.63	0.90	1.10	1.27	1.42

Answers: Matching: B, D, E, C, A Multiple Choice: 1. B; 2. A; 3. B; 4. C; 5. B

More Multiple Choice: 1. C; 2. B; 3. D; 4. A; 5. D

Question 5 is a trick question, as the current also depends on the voltage:

$$I = \frac{V}{R}$$
 so $P = VI = V\left(\frac{V}{R}\right) = \frac{V^2}{R}$

Problem Solving:

1. $Distance \propto Time^2$, $k = 4.9 m/s^2$

