Diffraction Through a Single Slit

Light passing through a single, narrow slit is diffracted. The amount the light is diffracted depends on
-The wavelength of the light
-The width of the slit
-The distance from the slit to the screen

$\sin \theta_{1}=\frac{\lambda}{W}$ (dark)
(b)

$\sin \theta_{2}=\frac{3 \lambda}{2 w}$ (bright)
(c)

$\sin \theta_{3}=\frac{2 \lambda}{W}$ (dark)

For the first dark fringe, adjacent to the central maximum,

$$
\sin \theta_{1}=\frac{\lambda}{w}
$$

And for the next dark fringe,

$$
\sin \theta_{2}=\frac{2 \lambda}{w}
$$

So in general, for dark fringes,
$\sin \theta_{n}=\frac{n \lambda}{w}$

So if y_{n} is the distance from the central maximum to the $\mathrm{n}^{\text {th }}$ nodal fringe, $(\mathrm{n}=1,2,3 \ldots)$

$$
y_{n}=\frac{n L \lambda}{w}
$$

And for bright fringes (maxima),

$$
\sin \theta_{n}=\frac{\left(n+\frac{1}{2}\right) \lambda}{w}
$$

And thus ...

$$
y_{n}=\frac{\left(n+\frac{1}{2}\right) L \lambda}{w}
$$

And for the distance between successive like fringes,
$\Delta y=\frac{L \lambda}{w}$
Example: A narrow, single slit with a width of $6.8 \times 10^{-6} \mathrm{~m}$ is illuminated by light of wavelength 610 nm and a diffraction pattern is produced on a screen 3.4 m away. Determine the
a) angular width of the central maximum.
b) width of the central maximum.
a) To find the angular width of the central max, find the angle for the $1^{\text {st }}$ order dark fringe and double it.

$$
\begin{aligned}
& \sin \theta_{n}=\frac{n \lambda}{w} \longrightarrow \sin \theta_{1}=\frac{(1)\left(6.10 \times 10^{-7}\right)}{6.8 \times 10^{-6}} \\
& \theta_{1}=5.1^{\circ}
\end{aligned}
$$

So the angular width of the central max is 10.2°
b) To find the width of the central max, use distances.

$$
\begin{aligned}
& y_{n}=\frac{n L \lambda}{w} \longrightarrow y_{1}=\frac{(1)(3.4)\left(6.1 \times 10^{-7}\right)}{6.8 \times 10^{-6}} \\
& y_{1}=0.31 \mathrm{~m}
\end{aligned}
$$

So the width of the central max is 0.62 m or 62 cm .

