More Practice with Collisions in 2D
 SPH4U

1. A steel ball of mass 0.50 kg , moving with a velocity of $2.0 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$, strikes a second ball of mass 0.30 kg , initially at rest. The collision is a glancing one, causing the steel ball to have a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ [$3 \underline{0}^{\circ} \mathrm{N}$ of E] after the collision. Determine the velocity of the second ball after the collision.

$$
\begin{array}{lll}
m_{A}=0.50 \mathrm{~kg} & v_{A}=2.0 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{E}] & v_{A}{ }^{\prime}=1.5 \frac{\mathrm{~m}}{\mathrm{~s}}\left[30^{\circ} \mathrm{N} \text { of } \mathrm{E}\right] \\
m_{B}=0.30 \mathrm{~kg} & v_{B}=0 \frac{\mathrm{~m}}{\mathrm{~s}} & v_{B}^{\prime}=?
\end{array}
$$

Determine the total East-West (x) and North-South (y) components of the momentum before:

$$
\begin{aligned}
& p_{\text {TOTALx }}=m_{A} v_{A x}+m_{B} v_{B x}= \\
& p_{\text {TOTALy }}=m_{A} v_{A y}+m_{B} v_{B y}=
\end{aligned}
$$

Break $m v_{A}{ }^{\prime}$ down into its East-West (x) and North-South (y) components:

$$
\begin{aligned}
& m v_{A x}^{\prime}= \\
& m v_{A y}^{\prime}=
\end{aligned}
$$

Calculate the East-West (x) and North-South (y) components of the second ball's momentum:

$$
\begin{aligned}
& m v_{B x}^{\prime}=p_{\text {TOTALx }}-m v_{A x}^{\prime}= \\
& m v_{B y}^{\prime}=p_{T O T A L y}-m v_{A y}^{\prime}=
\end{aligned}
$$

Find the momentum of the second ball (from the components) and the velocity (divide the momentum by the mass):
2. Two cars collide at an intersection. One car of mass 1400 kg was travelling at $45 \mathrm{~km} / \mathrm{h}$ [S]. The other car of mass 1300 kg was travelling at $39 \mathrm{~km} / \mathrm{h}$ [E]. If the cars have a completely inelastic collision, what is their velocity just after the collision?

$$
\begin{array}{ll}
m_{A}=1400 \mathrm{~kg} & v_{A}=45 \frac{\mathrm{~km}}{\mathrm{~h}}[\mathrm{~S}]= \\
m_{B}=1300 \mathrm{~kg} & v_{B}=39 \frac{\mathrm{~km}}{\mathrm{~h}}[E]= \\
v_{A+B}^{\prime}=? &
\end{array}
$$

Determine the total East-West (x) and North-South (y) components of the momentum before:

$$
\begin{aligned}
& p_{\text {TOTALx }}=m_{A} v_{A x}+m_{B} v_{B x}= \\
& p_{\text {TOTALy }}=m_{A} v_{A y}+m_{B} v_{B y}=
\end{aligned}
$$

Calculate the total momentum of the system before the collision (magnitude and direction):

$$
p_{\text {TOTAL }}=\quad \theta=
$$

Note that $p_{\text {TOTAL }}{ }^{\prime}=p_{\text {TOTAL }}$.
Calculate the velocity of the cars total after the collision:

$$
v_{A+B}^{\prime}=\frac{p_{\text {TOTAL }}{ }^{\prime}}{m_{A}+m_{B}}=
$$

Answer: $\quad 3.0 \times 10^{1} \mathrm{~km} / \mathrm{h}\left[39^{\circ} \mathrm{E}\right.$ of S$]$

Solve the following question on a separate piece of paper:
3. In a game of marbles, a collision occurs between two marbles of equal mass. One marble is initially at rest; after the collision, the marble acquires a velocity of $1.10 \mathrm{~m} / \mathrm{s}$ at an angle of 40.0° from the original direction of motion of the other marble, which has a speed of $1.36 \mathrm{~m} / \mathrm{s}$ after the collision. What is the initial speed of the moving marble?

Answer: $\quad 2.00 \mathrm{~m} / \mathrm{s}$. For a full solution, refer to p. 256-257.

