
Momentum and Impulse SPH4U

	nentum is defined as the		and its
	quantity and has units		
π 13 α	quantity and has diffes		
An unbalance	ced acting on an obj	ect will cause an	that wil
chan	ge its instantaneous velocity and the	refore its momentum:	
This change	in momentum is called the	·	
Example:	A book of mass 1-kg falls on the floor and is stopped by the floor. Its speed impact was 5 m/s. What is the: (a)momentum of the book before impact (b)momentum of the book after impact (c)change in momentum (impulse)?		impact? mpact?
Newton's 2 ^{no}	^d Law:		

Force-time graphs are most useful when the force is .

Example sketch:

For such cases, we consider the ______ force, which is the force that if constant would give us an equal area over the same time interval.

Example:

A 0.27-kg volleyball with an initial velocity of 2.7 m/s [E], hits a net, stops, and drops to the ground. The average force exerted on the volleyball by the net is 33 N [W]. How long is the ball in contact with the net?