Stoichiometry

$$
\begin{aligned}
1 \text { Marshmallow } & +4 \text { choc chips }+2 \text { crackers } \\
& \rightarrow 1 \text { smoore }
\end{aligned}
$$

If I have 6 marshmallow, 24 chips and 12 crackers, how many smoores can I make?

Coefficients in balanced chemical equations tell you the quantities needed for a reaction, and how much product is produced!

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

Coefficients can be read as either number of molecules or moles.

Mole Ratio: a ratio between the coefficients in an equation.

The mole ratios for the above equation are:

$$
\begin{aligned}
& \mathrm{Zn}: \mathrm{HCl}=1: 2 \\
& \mathrm{Zn}: \mathrm{ZnCl}_{2}=1: 1 \\
& \mathrm{Zn}: \mathrm{H}_{2}=1: 1
\end{aligned}
$$

$$
\mathrm{HCl}: \mathrm{ZnCl}_{2}=2: 1
$$

$$
\mathrm{HCl}: \mathrm{H}_{2}=2: 1
$$

You can use mole ratios to find the amount of reactants needed or predict the amount of product made.
*Write the ratio as a conversion factor as the unknown/known.

Ex 1. $3 \mathrm{MgCl}_{2}+2 \mathrm{Na}_{3} \mathrm{P} \rightarrow \mathrm{Mg}_{3} \mathrm{P}_{2}+6 \mathrm{NaCl}$
a) If 9 mol of MgCl_{2} is consumed, how many mol NaCl is produced?
b) How many mol of $\mathrm{Na}_{3} \mathrm{P}$ react?
c) If 3.2 mol of $\mathrm{Na}_{3} \mathrm{P}$ react, what mass of $\mathrm{Mg}_{3} \mathrm{P}_{2}$ is produced?
d) If 10 g of NaCl was produced, how many moles of $\mathrm{Na}_{3} \mathrm{P}$ was reacted?

