Ideal Gas Properties and the Ideal Gas

 LawLaw of Combining Volumes: when gases react, the volumes of the reactants and products are always in whole number ratios.

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Law of Multiple Proportions: the masses of the elements that combine can be expressed in whole number ratios.

Avogadro's Hypothesis: Equal volumes of all ideal gases at the same temperature and pressure contain the same number of moles.

Molar Volume: The volume of 1 mole of a gas
At STP, all ideal gases have the same molar volume, $22.4 \mathrm{~L} / \mathrm{mol}$

Ex 1a) At STP, a sample of O_{2} has a volume of 63.7 L . How many moles are there?
b) If you add 3.76 mol of O_{2} to the original sample, what will the final volume be?

* Remember to use this equation we are assuming we have an ideal gas......

Ideal Gas Law

If we combine Avogadro's Hypothesis with the Combined Gas Law:

For 1 mol of ideal gas at $\mathrm{STP}, \mathrm{R}=$?

* You can use different units, but then R does not equal 8.31. See pg 485.

Ex 2. What volume would 2.32 mol of H_{2} gas have if held at 105.3 kPa and $25^{\circ} \mathrm{C}$?

Ex 3. How many moles of CO_{2} are there in a sample of gas with a volume of 18.2 L at SATP?

