Combined Gas Law

Standard Temp and Pressure (STP): $0^{\circ} \mathrm{C}$, 101.3 kPa

Standard Ambient Temp and Pressure (SATP): $25^{\circ} \mathrm{C}, 100 \mathrm{kPa}$

The previous gas laws we learned all have special conditions which do not make them always useful. Combining them reduces the restrictions on what we can calculate

Boyle's:
Charles':
Gay-Lussac's:
Since pressure and temperature are directly related to volume and are inversely related to each other:

This allows us to change 3 variables at the same time.

Ex 1. In the morning, Judy puts 2.5 L balloons on her mailbox as part of her son's birthday party. A high pressure system moves in (104.9 kPa) making the day sunny and $32^{\circ} \mathrm{C}$. If the morning air temp was $15^{\circ} \mathrm{C}$, and pressure was 101.3 kPa , what will the volume of the balloons be?

Dalton's Law of Partial Pressures

The total pressure of a mixture of gases is the sum of the pressures of each of the individual gases.

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3} \ldots . .
$$

Ex 2. If 3 atm of CO_{2} gas is added to 2 atm of Cl_{2}, what is the total pressure in the container?

Ex 3. Air contains 78 \% Nitrogen gas at STP. Calculate the partial pressure.

