Light Waves in 2D SPH4U

To represent waves in 2D, we draw	the:	71
lines	of the waves.	ray
Wave fronts are always	to the	
showing the direction of pro	opagation.	wave front
When determining how a wave wil	l propagate (where to draw the nex	kt wave front), we often refer to
	:	
"Every point on a wave from	nt can be considered as a	of tiny
that spi	read out in front of the wave at the	same speed as the wave.
The surface	tangent to these wavelets is the new wave front."	
When a wave passes into another not the wave will change of		
and therefore the		
If the wave fronts are at an	with the boundary, the	
wave will		Figure 10-22. Refraction of a sur- face wave at the boundary of deep and shallow water. The shallow
At, so	ome light will be	water is above the boundary in the picture. Observe the slight reflection of the incident wave to the left at the boundary.
The reflected wave can	with the incident wave	2.
The Principle of	: "The net displacement a	t any position is the of
the displacements of all way	ves at that position."	

If the waves are _____ (both positive displacement or both negative displacement) the interference will be ______, ______ of the resultant wave. 2a Crests and troughs reinforce If the waves are _____ (one with positive displacement and the other with negative displacement) the interference will be . . Crests and troughs cancel One of the most commonly studied interference patterns is that produced by . (actually hyperbolic) occur where the waves of the sources are out of phase. The pattern produced by light emerging from ______ in a screen is similar. . . . but not identical, as light passing _____ (or _____ will . Diffraction is the effect observed when a wave passes through a slit or by an obstacle. The most diffraction occurs when:

Diffraction will also result in effects.