Light Absorption and Reflection
 SPH4U

The \qquad colours of light (the colours the cones of our retinas respond to) are
\qquad , \qquad , and \qquad .

The \qquad colours of light are \qquad primary colours:
blue + red $=$ \qquad
blue + green $=$ \qquad green + red $=$ \qquad
\qquad light is a combination of \qquad colours
(or the \qquad).

Most objects \qquad light but \qquad it. Sketch: \quad Incident pulse

Reflected pulse

Note that a wave reflected at a \qquad .

A wave reflected at a \qquad .

Some light \qquad may be \qquad by the \qquad of the object.

Different chemical substances will absorb different colours.
Example:

An object illuminated with white light that absorbs all colours of light will appear \qquad .

An object illuminated with white light that absorbs blue light will appear \qquad .

Light is reflected from a surface such that the angle of incidence equals the angle of reflection:
Light Source

θ_{i} angle of incidence $=$
θ_{r} angle of reflection

Note that these angles are \qquad :
the line \qquad .

If the surface reflecting the light is \qquad , parallel incident rays will have parallel
reflections (and may \qquad).

This is \qquad or \qquad reflection.

If the surface reflecting the light is \qquad , the rays reflect in seemingly random directions.

This is \qquad reflection.

Side note: some materials will \qquad light and \qquad the light at a \qquad (\qquad).

We call these materials \qquad .

