Lenses and Ray Diagrams
 SNC2D

A lens is a piece of transparent material that has been shaped in such a way that it \qquad
light rays to \qquad .

A \qquad lens (here, a double convex lens) focuses parallel rays to a single point and can form a \qquad image.

Sketch:

A \qquad lens (here, a double concave lens) will always form a
\qquad image.

Sketch:

Note that there are two \qquad , one on either side of the lens, and that rather than C (the centre of curvature), we have $2 F$ (twice the focal length).

Refraction Rules for a Converging Lens

- An incident ray travelling parallel to the principal axis will refract such that it travels
\qquad .

An incident ray travelling through the focal point will refract such that it travels
\qquad on the far side of the lens.

Point to note:
Not all converging lenses are double-convex lenses. Converging lenses may have different shapes. When drawing ray diagrams, therefore, we ignore the shape of the lens and refract the rays at

Refraction Rules for a Diverging Lens

An incident ray travelling parallel to the principal axis will refract such that its
\qquad travels \qquad
on the \qquad side of the lens.

- An incident ray travelling towards the focal point on the \qquad side of the lens will refract such that it travels parallel to the principal axis on the far side of the lens.

The $3^{\text {rd }}$ Rule (for Both Lenses)

- An incident ray travelling through the exact \qquad of the lens will continue to travel in the \qquad direction after refracting through the lens.

Ray Diagrams Redux

We can use ray diagrams to locate and describe the characteristics of an image.
Step 1: Draw the \qquad rays (parallel to the axis, through the focus, and/or through the centre).

Step 2: Draw the \qquad rays according to the refraction rules.

Step 3: Locate the \qquad
More Practice
Draw scaled ray diagrams to determine the answers to page 462 \#6 and \#10.

