Lenses and Ray Diagrams SNC2D

rays to	·
A	 lens (here, a double convex lens) focuses parallel rays
to a single point and can	form a image.
Sketch:	
Α	 lens (here, a double concave lens) will always form
	image.
Sketch:	
that there are two	, one on either side of the lens, and that rather than
e centre of curvature), we l	have $2F$ (twice the focal length).
	Anatomy of a Convex Mirror
	Yertical Axis
	Δ

+ Focal + Length

Refraction Rules for a Converging Lens

• An incident ray travelling parallel to the principal axis will refract such that it travels

An incident ray travelling through the focal point will refract such that it travels

______on the far side of the lens.

Point to note:

Not all converging lenses are double-convex lenses. Converging lenses may have different shapes. When drawing ray diagrams, therefore, we ignore the shape of the lens and refract the rays at

Refraction Rules for a Diverging Lens

■ An incident ray travelling parallel to the principal axis will refract such that its

travels

on the ______ side of the lens.

An incident ray travelling towards the focal point on the ______ side of the lens

will refract such that it travels parallel to the principal axis on the far side of the lens.

The 3rd Rule (for Both Lenses)

An incident ray travelling through the exact ______ of the lens will continue

to travel in the ______ direction after refracting through the lens.

Ray Diagrams Redux

We can use ray diagrams to locate and describe the characteristics of an image.

<u>Step 1</u>: Draw the ______ rays (parallel to the axis, through the focus, and/or through the centre).

Step 2: Draw the _____ rays according to the refraction rules.

Step 3: Locate the _____