Determining the Concentration of a Solution

As you learned in section 2.6, chemists can use a spectrophotometer to determine the concentration of a solution. A spectrophotometer measures the amount of light energy that is absorbed or transmitted by dissolved solutes as light passes through the solution. In this activity, you will use a spectrophotometer to determine the concentration of a copper(II) sulfate solution, $CuSO_{4(aq)}$. When concentrated aqueous ammonia, $NH_{3(aq)}$, is added to aqueous copper(II) sulfate, $CuSO_{4(aq)}$, the pale blue copper(II) ion, $Cu_{(aq)}^{2+}$, is converted to the intensely blue-coloured $Cu(NH_3)_{4(aq)}^{2+}$ ion.

Question

What is the molar concentration of a copper(II) sulfate solution?

Materials

spectrophotometer eight 50-mL beakers burette stand two 50-mL burettes 10-mL graduated cylinder glass stirring rod marking pens 10 test tubes or cuvettes (to fit the spectrophotometer) 100 mL 0.50-mol/L copper(II) sulfate solution, CuSO_{4(aq)} 5 mL copper(II) sulfate solution of unknown

concentration

Procedure

1. Copy **Table 1**, allowing enough space to record your observations for ten samples.

Table 1Observation Table

Test tube	[Cu ²⁺ (aq)]	Absorbance

(Assume that $[Cu_{(aq)}^{2+}] = [CuSO_{4(aq)}]$.)

- 2. Fill a clean burette with 50 mL of distilled water.
- 3. Fill another clean burette with 50 mL of 0.50-mol/L copper(II) sulfate solution.
- 4. Label eight clean, dry 50-mL beakers with the numbers 1 to 8.
- 5. Use the eight labelled beakers to prepare increasingly dilute copper(II) sulfate solutions, according to **Table 2**.

Table 2Concentrations	of Dilute Copper(II) Sulfate Solutions
-----------------------	--

Beaker	[CuSO _{4(aq)}] (mol/L)
1	0.50
2	0.25
3	0.14
4	0.07
5	0.04
6	0.02
7	0.002
8	0.0002

- 6. Label eight test tubes with the numbers 1 to 8. Label a ninth test tube "distilled water." (This test tube will act as a "blank.") Label a tenth test tube "unknown."
- Pour 5.0 mL of each copper(II) sulfate solution that you prepared in step 5 into its corresponding test tube. Pour 5.0 mL of distilled water into test tube 9.

- 8. Use the operating instructions for your spectrophotometer to set the desired wavelength and zero the instrument. Ask your teacher for assistance if necessary. Keep the spectrophotometer well-covered at all times to prevent stray light from entering the instrument.
- **9.** Place test tube 1 in the well of the spectrophotometer, and read the absorbance for the solution. Repeat for test tubes 2 through 8. Record the absorbance values in your observation table (**Table 1**).
- Pour 5.0 mL of copper(II) sulfate of unknown concentration into test tube 10. Measure the absorbance for the solution, and record this value in your observation table.
- 11. Dispose of all solutions according to your teacher's instructions. Clean up your work area.

Analysis

- (a) Plot a graph of absorbance versus concentration of $Cu_{(aq)}^{2+}$ by plotting absorbance on the vertical axis. Draw a line of best fit through the points on the graph. If more points are needed to produce a smooth line, prepare additional concentrations of $Cu_{(aq)}^{2+}$ ions, measure the absorbance values, and add these values to your graph.
- (b) What does your graph tell you about the relationship between absorbance and concentration?
- (c) Answer the Question.

Evaluation

- (d) Why did you zero the spectrophotometer initially? Explain why you used a "blank."
- (e) Describe possible sources of experimental error in this activity.
- (f) Suggest improvements to the Procedure that would help to reduce error.