Name: \qquad

Equations with Lenses SPH3U

The Lens Equation (for converging or diverging lenses):

Note that all distances are measured from \qquad .

Example: Converging Lens
A $4.0-\mathrm{cm}$ tall light bulb is placed 18 cm from a converging lens having a focal length of 12 cm . Determine the image distance.

Givens: $\quad f=$

$$
d_{o}=
$$

Unknown $\quad d_{i}=$

Select an Equation: $\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$ becomes $\frac{1}{d_{i}}=\frac{1}{f}-\frac{1}{d_{o}}$
Substitute and Solve: $\frac{1}{d_{i}}=$

Similarly, the magnification of an object is the ratio of the image height, h_{i}, to the object height, h_{o} :

Or the ratio of the image distance, d_{i}, to the object distance, d_{o} :

Another Example: Determine the image height of a $5.0-\mathrm{cm}$ object placed 20.0 cm from a double convex lens with a focal length of 15 cm .

First find your image distance:

Now find your image height:

Draw a 1:5 scaled ray diagram to check your answer (i.e. 1 cm on your diagram should equal 5 cm in the question):

