Enrichment

Chapter 7

BLM 7-3

Goal

Procedure

Questions

Chemical Equilibrium of Gases

Investigate the relationship between the equilibrium constants for concentration and, for gases, partial pressure

You have learned to determine equilibrium constant (K_{c}) for gaseous systems using concentration data. It is also common to use the pressure of gases to determine the value for the equilibrium constant. Consider the equilibrium between the gases NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$:
$\mathrm{N}_{2} \mathrm{O}_{4}$ (colourless) $\leftrightarrow 2 \mathrm{NO}_{2}$ (brown).
You can write the equilibrium expression as. $K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$ If the pressures of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are used in the equilibrium expression, then $K_{\mathrm{p}}=\frac{p_{\mathrm{NO}_{2}}^{2}}{p_{\mathrm{N}_{2} \mathrm{O}_{4}}}$.

Notice that K_{p} is used to represent an equilibrium expression expressed in terms of pressure. The terms in the numerator and the denominator are the equilibrium partial pressures of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ respectively, in units of atmospheres. Note that $K_{\mathrm{c}} \neq K_{\mathrm{p}}$ because the concentrations of gases (in units of $\mathrm{mol} / \mathrm{L}$) are not equal to the pressure in atmospheres at equilibrium.

Recall that pressure is related to concentration using the ideal gas law: $P=(n / v) R T$. Using this formula, you can obtain a relationship between K_{c} and K_{p} : $K_{\mathrm{p}}=K_{\mathrm{c}}(0.0821 \mathrm{~T})^{\Delta n}$

In this equation, $\Delta n=\mathrm{b}-\mathrm{a}$, where b represents the moles of gaseous products, and a represents the moles of gaseous reactants.

1. Write the equilibrium expression, K_{p}, for the reaction shown below.

$$
\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \quad K_{\mathrm{c}}=1.67(\text { at } 500 \mathrm{~K})
$$

2. If K_{p} for the reaction shown above is 1.05 at $250^{\circ} \mathrm{C}$, and the partial pressures for PCl_{5} and PCl_{3} are 0.90 atm , and 0.45 atm respectively, determine the partial pressure of Cl_{2} at equilibrium.
3. If the volume of the vessel is 3 L , determine the amount of Cl_{2} present at equilibrium.
4. Determine the corresponding K_{c} for this reaction.
