The Geometry of Interference and Diffraction $$\operatorname{SPH4U}$$

Consider the interference pattern for two point sources in phase (e.g., two slits).

Along	the line halfway between the two slits, the waves will be	because the
	is the	
	A would appear on the scre	en.
	This bright spot is called the	·
A little	of the central maximum (at an	dark (destructive interference)
	angle θ), the path difference between the waves is	\
	, and the waves will arrive,	
	creating a dark spot.	d d
A little	bit further to the side and the path difference is	
	The waves will be again, creating	1 wavelength
Let's fi	nd the position of each of the dark spots, where the path	path difference — 1)
	difference is	path difference = $\frac{1}{2}\lambda$
n =	d =	
L =	$x_n = $	
S ₁	$\left(n-\frac{1}{2}\right)\lambda$	X

Light from a monochromatic source is directed through two slits separated by 0.22 mm and an interference pattern is created on a screen 3.0 m away. If the separation between the first and seventh nodal lines is 5.0 cm, what is the wavelength of the light?

Similarly, for bright spots away from the central maximum:

A _______ has a ______ of equally spaced ______ and a similar interference pattern.

The primary difference between the patterns is that the ______ and _____ and _____.

Consider each of the	as a point source of		
The wavelets will all be at the			
At some angle θ , there is a λ path difference between the top	θ_1 , λ		
and bottom of the slit.	θ_1		
Each point therefore has a	5		
1 and 7, 2 and 8, etc.,	$\begin{bmatrix} W & 7 \\ 8 \\ 9 \end{bmatrix}$		
resulting in	10 7 11 7 12 7		
The minima occur at			
Example: Monochromatic light of wavelength 670 nm passcreen is placed 0.30 m away. What is the width	n of the central maximum?		
is the ability of an instrument to	of		
two objects.			
The, the	and the		
region where diffractor from each source of small pinhole	Images overlap because of diffraction and are unresolved.		