The Geometry of Interference and Diffraction SPH4U

Consider the interference pattern for two point sources in phase (e.g., two slits).
Along the line halfway between the two slits, the waves will be \qquad because the
\qquad is the \qquad .

A \qquad would appear on the screen.

This bright spot is called the \qquad .

A little \qquad of the central maximum (at an angle θ), the path difference between the waves is
\qquad , and the waves will arrive \qquad creating a dark spot.

A little bit further to the side and the path difference is \qquad .

The waves will be \qquad again, creating
\qquad .

Let's find the position of each of the dark spots, where the path
 difference is \qquad .
$n=$ \qquad $d=$ \qquad
$L=$ \qquad $x_{n}=$ \qquad

Example: Light from a monochromatic source is directed through two slits separated by 0.22 mm and an interference pattern is created on a screen 3.0 m away. If the separation between the first and seventh nodal lines is 5.0 cm , what is the wavelength of the light?

Similarly, for bright spots away from the central maximum:
A \qquad has a
\qquad of equally spaced
\qquad and a similar interference pattern.
The primary difference between the patterns is that the maxima are much \qquad and
\qquad .

\qquad as a point source of \qquad .

The wavelets will all be \qquad at the \qquad .

At some angle θ, there is a λ path difference between the top and bottom of the slit.

Each point therefore has a \qquad :

1 and 7, 2 and 8, etc.,
resulting in \qquad .

The minima occur at

Example: Monochromatic light of wavelength 670 nm passes through a slit width of $12 \mu \mathrm{~m}$. A screen is placed 0.30 m away. What is the width of the central maximum?
\qquad is the ability of an instrument to \qquad of
two objects.
The \qquad , the \qquad and the
\qquad .

