HONORS: Naming Organic Compounds

Organic chemistry centers around the element carbon.

<u>Hydrocarbons</u> (compounds made of the elements <u>hydrogen</u> and <u>carbon</u> are the basic building foundation of organic chemistry.

Carbon is unique among the elements because it can have up to four bonds per Carbon atom.

Numerical Prefixes = Number of Backbone Carbon Atoms

The prefix in the name of an organic molecule indicates the **<u>number of carbon atoms</u>** found in the longest chain of carbon atoms. You should <u>memorize</u> the prefixes:

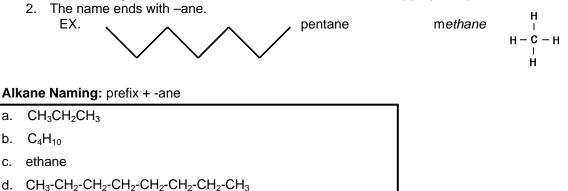
Prefix	# C atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

alkanes: hydrocarbons having only _____ bonds

alkenes: hydrocarbons having at least one _____ bonds

alkynes: hydrocarbons having at least one _____ bond

Types of Hydrocarbons	Alk <u>anes</u>	Alk <u>enes</u>	Alkynes
Name	prefix + ending	prefix + ending	prefix + ending
Formula			
Bonds			


Bond Comparisons

Bond Strength _	>		>	
Bond Length		>	>	

Alkane, Alkene, Alkyne Naming

Naming Straight-Chain Alkanes:

1. Find the longest continuous chain of C atoms. Choose the appropriate prefix.

Naming Straight-Chain Alkenes/Alkynes:

Naming is a little bit more complex for alkenes and alkynes than for alkanes. Since the double bond could appear at various sites in a typical molecule, we have to specify where it is.

- 1. Count carbon atoms in the chain, and identify multiple bonds by the *-ene* or *-yne*, as appropriate.
- 2. Number carbon atoms so that the lowest number indicates the multiple bond position
- 3. Indicate the double/triple bond position with the number and dash, followed by the name EX.

Alkene Naming/Drawing: prefix + -ene

- a. $H_2C=CH_2$
- b. 2-Pentyne
- c. $H_2C=CHCH_2CH_3$ vs. $CH_3CH_2=CH_2CH_3$
- $e. \quad C_5H_{10}$

Alkyne Naming/Drawing: prefix + -yne

- a. $CH_3C \equiv CCH_2CH_2CH_3$
- b. $CH_3CH_2C \equiv CCH_2CH_3$
- c. $CH_3CH_2CH_2C=CCH_3$
- d. $CH_3CH_2CH_2CH_2C\equiv CH$

Alkane, Alkene, Alkyne Practice

1. 3-Octyne	2. 1-Hexene	3. 2-Nonene
4. Hexane	5. 4-Nonyne	6. 3-Hexene

- 7. CH_3 - CH_2 -CH=CH- CH_2 - CH_2 - CH_3
- 8. CH_3 -CH=CH- CH_2 - CH_2 - CH_3
- 9. CH_3 - CH_2 -CH=CH- CH_2 - CH_2 - CH_2 - CH_3

10. CH_3 - CH_3

12.

13.

$$CH_3 - CH_2 - CH_2 - C \equiv C - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

21.

```
сн<sub>3</sub>

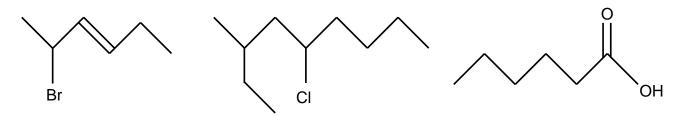
і

сн<sub>2</sub>

і

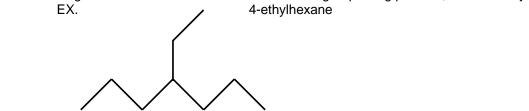
сн<sub>2</sub>-сн<sub>2</sub>-сн<sub>2</sub>-сн<sub>2</sub>-сн<sub>3</sub>
```

22.


сн₃ сн сн сн сн сн сн₂—сн₂—сн₃

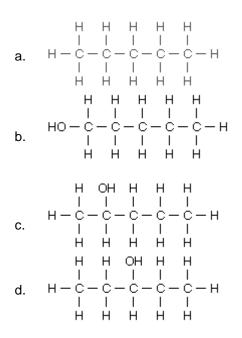
14. Why is 6-decene not possible?

Functional Groups and Nomenclature


Branches of carbon atoms and functional group in an organic molecule replace a hydrogen atom in a hydrocarbon. These replacement groups are much more reactive than the hydrogen atom that was replaced. They give the molecule its reactivity.

Many organic compounds are combinations of several categories:

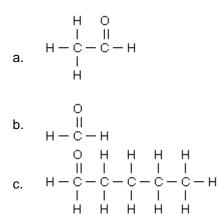
Naming Branched Alkanes


- 1. Number the "longest chain" carbons. Start with the end nearest the branch.
- 2. Name and give the carbon # of the branch/functional group using prefixes, but end in -yl.

Naming Alcohols (-OH group) = -ol ending

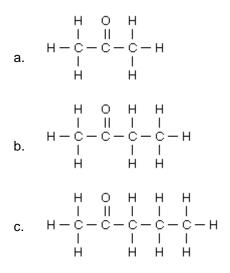
Alcohols are named just like alkanes but contain a <u>hydroxyl</u> group in place of a hydrogen. Alcohols are designated with an **-ol ending.**

- 1. Specify the location of the OH group(s) by placing a number with dash representing the carbon atom the hydroxyl group is attached to
- 2. Name the carbon chain using the prefix system, but ending in the suffix -ol for alcohols



Carbonyl Naming:

	Ketones	Aldehydes	Esters	Carboxylic Acids
Functional groups containing the				
containing the <u>carbonyl</u> group	Names end in <i>–one</i> , ^w /the C in the carbonyl having the lowest possible number.	Names end in <i>–al,</i> ^w /the C in the carbonyl being C #1.	The C in the carbonyl is C #1. Whatever is attached to the –O– is named first, then the name ends in –oate.	Names end in <i>–oic acid</i> , ^w /the C in the carbonyl being C #1.


Naming Aldehydes (CH = O group) = -al ending

An aldehyde is an organic molecule that has an oxygen atom doubly bonded to the *terminal* carbon of the backbone carbon chain. An aldehyde is named with the **-al ending**. Since the **CHO** must be on the terminal #1 carbon atom, the position of the CHO does not need to be specified in the name.

Naming Ketones (–C=O group) = -one ending

Ketones are very similar to aldehydes. The only difference is that the C=O in a ketone is in the middle of a chain, and not on the terminal carbon. To name a ketone, use the **-one ending** and specify the position of the C=O with a number at the beginning of the name.

NOMENCLATURE Worksheet – Functional Groups

Draw the following organic molecules.

- 1. 2-pentanol 2. 1-butanol
- 3. 3-pentanone

4. ethanal

Name the following compounds. OH I CH₃-CH-CH₂-CH₃ 5. CH₃-CH₂-CH₂-CH₃ OH I CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃

9. CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 -OH