Reporting Measurements

A standard system of units (SI) was derived for use in scientists around the world.

Quantity	Unit Name	Symbol
Length	Meter	m
Mass	Kilogram	kg
Volume	Litre	L
Temperature	Kelvin	K
Amount of a substance	Mole	Mol

We use the SI units in combination with metric multiples to manipulate large and small quantities.

Prefix	Multiple	Power	Symbol
tera-	1,000,000,000,000	10 ¹²	Т
giga-	1,000,000,000	10 ⁹	G
mega-	1,000,000	10 ⁶	Μ
kilo-	1,000	10 ³	k
hecto-	100	10 ²	h
deca-	10	10 ¹	da
base unit	1	10 ⁰	
deci-	1/10	10 ⁻¹	d
centi-	1/100	10 ⁻²	С
milli-	1/1000	10 ⁻³	m
micro-	1/1,000,000	10 ⁻⁶	μ
nano-	1/1,000,000,000	10 ⁻⁹	n
pico-	1/1,000,000,000,000	10 ⁻¹²	р

Converting Units

- 1. Use a conversion factor multiply by the fraction Unknown/Known
- Ex 1. 25 m = ? cm
- Ex 2. 35600 mm = ? km

Scientific (Exponential) Notation

In order to handle very large and small numbers, scientists use a technique known as exponential notation.

To express a number, we use a coefficient multiplied by base 10 raised to a power (exponent).

The exponent tells you how many places the decimal has been moved, and in which direction (positive = left, negative = right)

ex. 2700 is expressed as 2.7×10^3

 $ex 0.00045 = 4.5 \times 10^{-4}$

Calculators have different ways to enter scientific notation. You either have an E, EE or 10^x button.