Light as a Wave SPH4U

All \qquad particles have an electric field.

When they \qquad , they \qquad the

Electric

 field lines
electric field (and create a \qquad).

These field \qquad through space
as an \qquad wave, aka \qquad .

The electric and magnetic field distortions are \qquad to each other and to the direction of propagation.

- \qquad : Radio
-
- \qquad : Visible Light
- \qquad : UV
- \qquad : X-rays
- \qquad : Gamma-Rays
(Note that there is \qquad involved as you go to \qquad .)

Electromagnetic waves travel at \qquad in a vacuum.
\qquad is how many \qquad .

The Wave Equation:

Example: What is the frequency of a light wave with a wavelength of 420 nm ?

Objects \qquad (\qquad from particle motion) at
\qquad related to their \qquad :

Wien's Law:

This light is emitted in all directions:

L(\qquad): total light \qquad /time (\qquad)

F \qquad): light energy/time/unit area \qquad)

Light also exhibits other wave behaviours, e.g., the Doppler Effect.

For a moving source of light the waves \qquad

- the wavelength gets \qquad !
\qquad light is shorter wavelength: we call this a \qquad shift.

For a moving source of light the waves \qquad

- the wavelength gets \qquad !
\qquad light is longer wavelength: we call this a \qquad shift.

Equation (for a receding source):
$\lambda \quad$ wavelength of signal
f frequency of signal
$v \quad$ velocity of recession (away)
$c \quad$ speed of signal
Example: A source's blue hydrogen line is shifted from 486.1 nm to 537.4 nm . What is the speed of the source relative to us?

