Ι	Light as a Wave SPH4U	e	El fie	ectric Id lines		
Allp	articles have an ele	ctric field.			Field line	→ C Distant
When they	, they		the	Stationary		charge
electric field (and create	a).	charge		
These field		through	space	<u>نار ا</u>	\sim	
as an	wave, a	ıka		Vibrating charge	Wave	Distant
The electric and magnet	ic field distortions a	ire		to each o	ther and to	the
direction of propagation				Mag	netic Field (B)	
The	is determined	by the scale o	f the charged		Field	E)
particle's		·		Wavelength (λ)		Direction
•		_: Radio				V
•		_: Infrared				
•		_: Visible Ligh	nt			
•		_: UV				
•		_: X-rays				
•		_: Gamma-Ra	ys			
(Note that there is		involved as	s you go to _)
Electromagnetic waves t	ravel at			in a vacuu	m.	
	is how many					

The Wave Equation:

Entample: A hat is the frequency of a light wave with a wavelength of 120 m	Example:	e: What is the freque	ency of a light	wave with a way	velength of 420 ni	n?
---	----------	-----------------------	-----------------	-----------------	--------------------	----

Objects	(from particle motion) at
	related to their	:
Wien's Law:		Blackbody curves for different temperatures n s i t y y
What is your	peak wavelength?	0 Wavelength
This light is e	mitted in all directions:	
L (): total light/ti	me ()
F (): light energy/time/unit area ()
	Star with luminosity L	Flux at distance r $F = L/4\pi r^2$

surface area of sphere $4\pi r^2$

Light also exhibits other wave behaviours, e.g., the Doppler Effect.

- λ wavelength of signal
- f frequency of signal
- *v* velocity of recession (away)
- c speed of signal
- Example: A source's blue hydrogen line is shifted from 486.1 nm to 537.4 nm. What is the speed of the source relative to us?