Making Measurements

Chemistry experiments are very similar to baking a cake. If measurements are not properly made you will not be a successful baker.

Accuracy: how close your measurements are to the true or expected value.

Precision: how close together multiple measurements are to each other.

Significant Digits

Measurements always have a degree of uncertainty because of the limitation of measuring devices (See Fig 1.5 pg 16)

All certain numbers and only one uncertain number should be reported in a measurement.

Counting Sig Digs

- 1. All non-zeros are significant ex. 2.314 has 4 sig digs.
- 2. Zeros can be divided into 3 categories:
 - a) Leading zeros are never significant ex. 0.001 has 1 sig dig.
 - b) Middle zeros are always significant ex. 130.008 has 6 sig digs.
 - c) End zeros:
 - If a decimal is anywhere in the number, end zeros are significant ex. 1.2300 has 5 sig digs.
 - If there is no decimal, end zeros (trailing) are never significant ex. 19000 has 2 sig digs.
- 3. When numbers are expressed in scientific notation, only the digits in the coefficient are significant

ex. 8.62×10^4 has 3 sig digs.

Calculation Rules

1. When multiplying or dividing, your answer should have the same number of sig digs as the number in the question with the lowest sig digs.

ex.
$$3.323 \times 1.7 = 5.6$$

2. When adding or subtracting, your answer should have the same number of decimal places as the number with the lowest decimal places.

$$ex. 15.98 - 4.9872 = 10.99$$

3. Rounding - last digit ≥ 5 round up- last digit < 5 round down