Making Measurements

Chemistry experiments are very similar to baking a cake. If measurements are not properly made you will not be a successful baker.

Accuracy: how close your measurements are to the true or expected value.

Precision: how close together multiple measurements are to each other.

Accurate

Precise

Accurate + Precise

Significant Digits
Measurements always have a degree of uncertainty because of the limitation of measuring devices (See Fig 1.5 pg 16)

All certain numbers and only one uncertain number should be reported in a measurement.

Counting Sig Digs

1. All non-zeros are significant
ex. 2.314 has 4 sig digs.
2. Zeros can be divided into 3 categories:
a) Leading zeros are never significant ex. 0.001 has 1 sig dig.
b) Middle zeros are always significant ex. 130.008 has 6 sig digs.
c) End zeros:

- If a decimal is anywhere in the number, end zeros are significant ex. 1.2300 has 5 sig digs.
- If there is no decimal, end zeros (trailing) are never significant ex. 19000 has 2 sig digs.

3. When numbers are expressed in scientific notation, only the digits in the coefficient are significant
ex. 8.62×10^{4} has 3 sig digs.

Calculation Rules

1. When multiplying or dividing, your answer should have the same number of sig digs as the number in the question with the lowest sig digs.

$$
\text { ex. } 3.323 \times 1.7=5.6
$$

2. When adding or subtracting, your answer should have the same number of decimal places as the number with the lowest decimal places.
ex. $15.98-4.9872=10.99$
3 . Rounding - last digit ≥ 5 round up

- last digit < 5 round down

